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Abstract 

The surface electromyography (sEMG) is a useful 

biofeedback signal for exploring neuromuscular 

interactions which are important in rehabilitation 

applications. Thus, a neuromuscular model that 

correlates muscular force generation and sEMG is 

developed in this paper. The model was developed 

based on muscular forces and corresponding sEMG 

responses measured on 10 volunteers. Linear 

correlation exists between the two biosignals and 

generated muscular forces can therefore be easily 

converted from sEMG measurements with a constant 

factor. Surface EMG signals were furthered to fit a 

Hill-type neuromuscular model. The model was 

validated with the acquired biosignals from 5 

volunteers. The prediction error is less than 20%.  

Keywords: surface electromyography (sEMG); 

skeletomuscular system; modelling; Hill model. 

1. Introduction 

1.1 Background 

 

Body movements are manipulated by the 

skeletomuscular system which may be dysfunctional 

because of diseases or hurts [2, 14]. The dysfunction 

could be recovered through physical rehabilitation 

practices [1, 4, 10] or partially improved through 

adequate assistive facilities [3, 9, 11].  However,  it  
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may take ages before answering the question whether 

a therapy is really beneficial to the patients or not [4]. 

This wastes medical resources, is ineffective in 

disease remedy, and hence provokes the demand of 

an integrated rehabilitation system. An integrated 

rehabilitation system can show the process of 

rehabilitation and modulate process parameters in a 

real time fashion through monitoring adequate 

physiological signals [21, 23, 26].  

Figure 1 describes the framework of a 

conceptual integrated rehabilitation system. The 

system regulates therapeutic facilities, such as 

neuromuscular electrical stimulation (NMES) or 

continuous passive motion machine (CPM), in 

accordance with feedback signals, normally 

electromyography (EMG) [12, 15, 23, 27]. The 

physician knowledgebase and the physiological 

database are considered in undergoing treatments. To 

facilitate the design of this rehabilitation system, a 

neuromuscular model of human body that 

characterizes the relationship between biofeedback 

signals and output forces shall be established [5, 24, 

28]. A neuromuscular model may consist of a nerve 

model and a muscle model [2, 6, 7]. The model can 

predict muscular force generation, based on EMG 

measurement, for closed-loop skeletomuscular 

control in rehabilitation [5, 8, 9]. 

 

Figure 1: Conceptual integrated rehabilitation 

system 
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Figure 2 shows the structure of a closed-loop 

skeletomuscular control. In systems engineering, a 

motor (efferent) neuron performs the role of actuator 

element while a sensory (afferent) neuron as a sensor 

for system output. Contraction commands from the 

brain are transmitted in the form of action potentials 

to skeletal muscles through efferent neurons. At the 

same time, feedback signals that represent muscular 

reactions are acquired by afferent neurons and are 

transmitted back to the brain [14]. 

 

Figure 2: Closed-loop skeletomuscular control 

 

The use of EMG in examining the states of the 

neuromuscular system has been a long history [20]. 

There are two kinds of electrodes used to pick EMG 

signals: surface electrodes (non-invasive) and needle 

electrodes (invasive) [15, 17]. A needle electrode has 

a better recording quality. However, a needle intrudes 

into the target tissue and may cause infection or 

damage the surrounding tissues [22]. A surface 

electrode has the advantages of being clean and easy 

to use, and is widely accepted in clinic applications. 

EMG signals acquired from the surface of skin using 

a surface electrode are called surface 

electromyography (sEMG) [20]. Signal processing 

must be employed to amplify, isolate, and denoise 

weak and contaminated sEMG to obtain a useful 

version [30]. 

An sEMG, originates from EMG that makes 

muscle contracting under the skin surface, indicates 

the resistance properties of the skin. There exists a 

direct link between EMG and sEMG. Thus, it is 

possible to predict the force generated by the 

skeletomuscular system using sEMG. In this study, 

an experimental scenario was developed to verify a 

proposed muscle model. Experiments were conducted 

on 10 male volunteers. Physiological responses 

correlating with muscle contraction were measured. 

The acquired data were used to validate the proposed 

muscle model and to optimize the model for different 

individualities. 

 

1.2 Objectives 

 

A physiological muscle model with EMG is the 

essential work in constructing an integrated 

rehabilitation system. There are two main kinds of 

modelling techniques, Hill-type model and 

Huxley-type model [16, 19]. Many derivative models 

with other biophysical properties involved can be 

found in the literature [6, 28], but sEMG signals are 

not considered in existing models. Thus, this study 

focuses on augmenting the basic skeletal muscle 

model using sEMG.  

The force-velocity relation of muscle contraction 

is included in the Hill-type model, which becomes 

the base for many derivative muscle models [6, 24]. 

The Hill-type model is used as a reference in our 

modelling. This new muscle model needs several 

biological parameters and sEMG signals as inputs. 

The output is predicted force generated in skeletal 

muscle contraction. Through the assistance of this 

model, we can investigate how muscular strength is 

generated with EMGs as biofeedback signal. This 

allows us to develop a non-invasive diagnosis system 

for rehabilitation. This model can also be used in 

other medical or engineering applications to reduce 

the time in building useful models, to decrease the 

amount of animal experiments, and hence to reduce 

the cost. 
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2. Muscle Physiology 

2.1 Physiology for Modelling 

 

The neuromuscular system consists of nervous 

and muscular systems. In control engineering, the 

nervous system can be treated as a controller that 

controls all body organs, and the muscular system 

can be seen as a combination of many actuators 

which drives peripheral organs. Skeletal muscles 

receive action commands from motor nerves. The 

interactions between muscles and nerves comprise 

afferent and efferent nerves, as shown in Figure 3(A). 

The axons of afferent nerves deliver information to 

the central nervous system. The axons of efferent 

nerves deliver signals for contraction from the central 

nervous system to the muscle. A closed-loop control 

system is constructed by the afferent and efferent 

nerves. Figure 3(B) illustrates the muscle spindle and 

its corresponding nerve endings [7]. Figure 3(C) 

shows a neuromuscular junction which innervates 

into the muscle fibre but lies entirely outside the 

muscle fibre plasma membrane. Figure 3(D) sketches 

a single-branch axon terminal and the muscle fibre 

membrane 

 

Figure 3: The muscle spindle and the end plate of 

the neuromuscular system [14] 

 

2.2 Physiology of Electromyography  

 

A motor neuron innervates a number of muscle 

fibres. This functional unit is called “motor unit”, as 

illustrated in Figure 4. A motor unit is the smallest 

control unit of a muscle since all fibres belonging to 

the same motor neuron always contract and relax 

synchronously. 

 

Figure 4: The motor nerve and muscle fibre 

components of the motor unit [14] 

 

When a nerve impulse reaches the neuromuscular 

junction, acetylcholine delivered across the junction. 

Action potentials quickly spread into the muscle fibre 

to excite myofibrils and hence to produce muscle 

contraction. For a motor neuron, the acquired signal is 

the sum of action potentials and is called motor 

neuron action potential (MUAP). For the sum of 

action potentials generated from different motor 

neuron, the acquired signal is called EMG. An EMG 

signal picked on the skin surface using appropriate 

instruments is named surface EMG (sEMG) [20]. 

Because of a highly linear correlation between 

integrated sEMG (iEMG) and force, integrated sEMG 

can be used to predict force output [25]. 
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2.3 Properties of Skeletal Muscle  

 

By analysing the above physiological facts, the 

behaviour of the muscle could be predicted and the 

mathematical model would be established.  

2.3.1 Twitch and summation properties 

When a motor unit receives a single action 

potential pulse from its motor neuron, the 

corresponding force response is a single twitch. The 

average period of twitch is approximately 200 ms (5 

Hz) in purely slow muscle fibres [14]. When action 

potentials behave beyond this frequency, the 

summation property is presented.  

2.3.2 Tetanus 

 When the action potential pulse frequency is 

much higher than the presented summation property, 

continuous contractions fuse together and are 

indistinguishable. This state is named tetanus, and the 

lowest frequency of tetanus is called critical 

frequency. 

2.3.3 Force-length property 

 The force-length property of a skeletal 

muscle is defined by the maximal concentric 

contraction force and the length of the muscle. The 

maximal isometric force is usually calculated with 

the physiological cross-sectional area and a factor k. 

Equation (1) shows the relation between the force (F0) 

and the fibre length: 

𝐹0=𝑘×
𝑀𝑢𝑠𝑐𝑙𝑒 𝑉𝑜𝑙𝑢𝑚𝑒

𝐹𝑖𝑏𝑒𝑟 𝐿𝑒𝑛𝑔𝑡ℎ
           (1) 

with atypical coefficient k= 20 - 40 N cm-2 . 

 

 

 

 

 

2.3.4 Force-velocity property. 

The force-velocity relation proposed by Hill in 

1938 describes the maximal, steady-state force of a 

skeletal muscle with its contraction velocity [16]. The 

proposed formula of this property is shown in 

Equation (2) where F is the steady-state force for 

shortening muscle length at the velocity v. F0 is the 

maximal, isometric force at an optimal sarcomere 

length, and the constant parameter is symbolized by a 

and b. 

       (2) 

3. Modelling the Skeletal Muscle 

3.1 Hill-type Model 

The Hill-type model composes three simple 

mechanical elements that are easy to analyse with 

fundamental mechanical theories. Figure 5 shows a 

free body diagram of the Hill-type model. The 

displacements of the contractile element (EC) and of 

the parallel element (EP) are represented by symbols 

w and u, respectively. The coefficients of elasticity of 

the contractile element (EC), serial element (ES), and 

the parallel element (EP) are indicated by , , 

and , respectively. In the same way, the lengths 

and the applied forces of each element are 

represented by LC, LS, LP and fC, fS, fP, respectively. 

The overall force output of the model is represented 

by f. 

 

 

 

 

 

 

Figure 5: Free body diagram of the Hill-type 

model win three individual elements [7] 
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3.2 Huxley-Type Model 

The Huxley-type model focusing on the 

contractile element in the Hill-type model is another 

famous mathematical muscle model [19]. The 

Huxley-type model, as shown in Figure 6, simulates 

the cross-bridge behaviour of the myosin filament. 

 

 

 

 

(a) 

 

 

 

 

 

 

 

(b) 

Figure 6. (a) Cross-bridge muscular behaviour 

and (b) the Huxley-type model [7] 

 

The Huxley-type model behaves mainly 

dominated by the probability of attachment between 

receiving site M and attaching site A. An unattached 

sliding element M may oscillates and hence the 

probability of attachment per unit time is only related 

to the distance x between the attaching site A and the 

equilibrium point O. The relationship between the 

probability of attachment and un-attachment is 

formulated as Equation (3), the so-called Huxley’s 

equation [7]: 

𝑑𝑛

𝑑𝑡
=(1−𝑛)𝑓(𝑥)−𝑛𝑔(𝑥) (3) 

Where x is the displacement between O and A in the 

Huxley model, n is the proportion of attached pairs 

which relates only with time alone, f(x) is the 

probability of attachment, and g(x) is the probability 

of which the attached connection broken. 

3.3 Surface EMG for Modelling 

In this paper, a Hill-based neuromuscular 

model is developed using sEMG for physiological 

indication. The inclusion of sEMG in modelling is 

the major difference of this study to existing models. 

The advantages of using sEMG as input signals are 

non-invasive and easy-to-use. A block diagram of the 

modified neuromuscular model containing sEMG 

module is illustrated in Figure 7. The human body is 

simulated using a modified neuromuscular model 

with input to the neuromuscular system replaced with 

sEMG. Since the Huxley-type neuromuscular model 

is a derivative of the Hill-type model, the 

force-length relation is considered in the model and 

the force-velocity relation is already involved in the 

Hill-type model. Finally, the predicted force is 

converted by a simulated skeletal system with the 

parameters measured on volunteer’s arms. Model 

parameters are hence identified experimentally. 

 

Figure 7: The Hill-based neuromuscular model 

 

3.4 Tentative Model Validation 

The force-length and force-velocity relation are 

applied to validate the modified neuromuscular 

model [7]. The relative curve between the force 

output and the fibre length is sketched in Figure 8. 

Another property is the force-velocity relation that 

contained in the Hill-type model. The validation is 

presented by the relative curves between force and 

contractive velocity that are shown in Figure 9. 
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(a) 

 

(b) 

Figure 8: Force-length relation: (a) experimental 

data [7] and (b) model prediction 

 

(a) 

 

(b) 

Figure 9: Force-velocity relation: (a) experimental 

data [7] and (b) model prediction 

4. Model Validation 

4.1 Experimental Setup 

 

Signals from 10 male volunteers were 

measured at the same condition and the same method 

using the experimental rig developed in house, as 

shown in Figure 10. The biceps of the fore arm is 

selected as the target skeletal muscle for recording 

because of less environmental noise contamination. 

The bicep has uniform skeletal muscle. Hence, it has 

a better quality of EMG recording than other sites.  

A participant rested for five minute before 

experimentation, to reduce biased initialization. The 

target skin surface was cleaned with alcohol solution 

for better electric conduction. All participants had 

their right hands as habitual usage hands. As shown 

in Figure 10(b), two signal electrodes are placed on 

the right hand and the ground electrode was placed 

on the left hand [20]. A load cell (5 kg, 3mV/V, 

Benediction, Taiwan) is used to record force 

responses from the target skeletomuscular system. 

Processed sEMG signal and force responses were 

collected using a digital oscilloscope (TDS5034B, 

Tektronix, USA) and then saved for subsequently 

off-line analysis. 
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(a) (b) 

 

(c) 

Figure 10: The experimental rig: (a) scheme, (b) 

measuring sites, and (c) setup 

 

Figure 11 shows the structure of the analogue 

signal processing system developed in house. 

Implementation of the sEMG signal module is 

detailed in Figure 12. sEMG signals from the two 

electrodes are pre-amplified by an instrument 

amplifier with a gain of 10. Ambient noises are to be 

effectively removed. The isolator electrically isolates 

the participant to avoid possible electrical shock. 

High frequency noises embedded in sEMGs which 

have frequency components below 350 Hz [18, 29] 

are rejected using a low-pass filter with a cutoff 

frequency of 1000Hz. The high-pass filter with a 

cutoff frequency of 100 Hz removes the 60 Hz power 

interference. The overall amplification gain is 1000. 

Peak integrated sEMG represents a high portion of 

skeletomuscular muscles excited [29], which 

indicates the rate of the force generated by the 

contractile elements of the skeletal muscles. 

 

Figure 11: Block diagram of the analogue signal 

processing system 

 

 

Figure 12: sEMG signal conditioner 

 

4.2 Post Signal Processing 

 

Acquired sEMG signals may be of low 

signal-to-noise ratio (SNR) because of noise 

contamination [18] although the analogue signal 

processor has tried to remove the noises. Hence raw 

signals were digitally processed for a better quality 

for analysis and subsequent modelling. The 

MATLAB DSP toolbox was used for post signal 

processing. Figure 13 shows the flowchart of the 

digital signal processing module. 

As shown in Figure 14(a), the processed 

analogue version still has a component at the 

frequency 60 Hz. This component is further filtered 

using a third-order digital Butterworth bandstop filter 

with resultant shown in Figure 14(b). A 120 Hz 
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component was observed in force signals from load 

cell. It was eliminated using a lowpass Butterworth 

filter with a cutoff frequency of 120Hz. For the 

integrated sEMG signals, the mean value filter 

reduces the influence of the low frequency 

components in integrated sEMGs. Signals are 

re-scaled to their original scales for visualisation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Flowchart of post signal processing 

 

 

 

 

 

 

Figure 14: sEMG signals before (top) and after 

(bottom) processing by a 60 Hz notch 

filter 

 

Figure 15 shows a sample acquisition. A 

contraction occurs at time stamp 5 s. Clearly, force 

responses can be effectively indicated by integrated 

sEMGs. Hence sEMGs is used in prediction of force 

generation. 

 

(a) 

 

(b) 

Figure 15: Time responses of a sample sEMG 

acquisition 
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4.3 Sample Single Trial 

 

A sample recording from a volunteer is 

shown in Figure 16. The figure shows 

sEMG and force responses, before and after 

signal processing. Correlation between force 

and sEMG measurements is shown in panel 

(b). The participant was instructed to 

gradually increase force application to the 

maxium and then to release the foce 

gradually. 

 

Figure 16: Force and sEMG measurements of a 

volunteer 

 

Figure 17 shows the mean force-sEMG 

correlation of recordings from the 10 volunteer. It 

shows a high linear correlation between integrated 

sEMG and force response. Accordingly, force 

generation can be predicted from sEMG 

measurement by a constant factor, as an alternative to 

EMG measurement. 

 

Figure 17: Correlation between sEMG and force 

measurements 

 

4.4 Force Predictor 

 

A force predictor is realized by applying sEMG 

to the Hill-type skeletomuscular model. Figure 18 

shows the structure of the proposed Hill-type model. 

The model is validated using the sEMG responses 

acquired from 5 volunteers. Figure 19 shows the 

mean value of prediction based on the 5 

measurements. The prediction error is within ±20%, 

quite a promising performance. 

 

Figure 18: Block diagram of the force predictor 
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Figure 19: Performance of the force predictor 

based on responses from 5 volunteers 

 

5. Conclusions 

Force generated by the skeletal muscle (biceps) 

is predicted using a Hill-based neuromuscular model 

with sEMG as biofeedback. This neuromuscular 

model is realized by converting theoretical formulas 

to programs for real-time prediction. A force 

prediction is built based on sEMGs recorded on 10 

volunteers. Validation on recordings from 5 

volunteers shows that the model can arrive at a 

prediction error less than 20%. The prediction is 

accurate enough in constructing a closed-loop control 

system for rehabilitation. 
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