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Abstract 

In this paper, we propose an improved 

photometric stereo scheme based on the Lambertian 

reflectance model and the constrained independent 

component analysis (cICA) method. When we obtain 

an object’s surface normal vector on each point of an 

image using the ICA model to reconstruct 3D shapes, 

we find that the x-axis, y-axis and z-axis values of the 

normal vector’s coordinates are not arranged in turn. 

Thus, we use the cICA method to solve the problem. 

We obtain the correct normal vector’s sequence form 

surface, and use a method for enforcing integrability 

to reconstruct 3D objects. We tested our algorithm on 

synthetically generated images for the reconstruction 

of object surfaces and on a number of real images 

captured from the Yale Face Database B. The 

experimental results demonstrate that the proposed 

cICA method is better than some existing approaches. 

Keywords: Photometric stereo, independent 

component analysis, face reconstruction. 

1. Introduction 

One of the approaches to computer vision is the 

photometric stereo approach for surface reconstruction. 

This approach is able to estimate local surface 

orientation by using several images of the same surface 

taken from the same viewpoint but under illuminations 

from different directions. It was first introduced by R. 

J. Woodham [1], who based it on the Lambertian 

reflectance model. It has received wide attention, and 

several efforts have been made to improve its recovery 

performance [2]-[18].  

 

 

 

The main limitation of the classical photometric 

stereo approach is that the light source positions must 

be accurately known. This necessitates a fixed, 

calibrated lighting rig. Hence, an improved 

photometric stereo method for estimating the surface 

normal and the surface reflectance of objects without 

a priori knowledge of the light source direction or the 

light source intensity was proposed by Hayakawa [3]. 

Hayakawa’s method uses the singular-value 

decomposition (SVD) method to factorize an image 

data matrix of three different illuminations into a 

surface reflectance matrix and a light source matrix 

based on the Lambertian model. However, Hayakawa 

still uses one of the two added constraints for finding 

the linear transformation between the surface 

reflectance matrix and the light source matrix. 

McGunnigle [4] introduced a simple photometric 

stereo scheme, which only considered a Lambertian 

reflectance model, where the self and cast shadows, 

as well as the inter-reflections, were ignored. Three 

images  at  a  tilt  angle  of  90∘  increments  

were captured. McGunnigle suggested using his 

method as a first estimate for an iterative procedure. 

Belhumeur et al. [11] showed that a generalized 

bas-relief transformation is a transformation of both 

the surface shape and the surface albedo for an 

arbitrary Lambertian surface. The set of images of an 

object in a fixed post but under all possible 

illumination conditions is a convex cone 

(illumination cone) in the space of images. When the 

surface reflectance can be approximated as 

Lambertian, this illumination cone can be constructed 

from a handful of images acquired under variable 

lighting.  Belhumeur et al. used as few as seven 

images of a face in a fixed pose, but they also used 

illumination by point light sources at varying and 

unknown positions to estimate the surface geometry 

of the face images and albedo which map up to a 

generalized bas-relief transformation. Despite their 

announced success of their method under unknown 

light source directions, the estimation of the surface 
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methods still required assistance using some added 

constraints or more images. Thus C.T. Lin, W.C. 

Cheng, and S.F. Liang proposed a Neural Network 

Based Adaptive Hybrid Reflectance Model [6]. In a 

neural network’s training process, we obtain a surface 

normal vector without knowing the source directions 

in advance. Because of the neural network’s light 

directions at the hidden level, those light directions 

nearly approach real light directions. This should 

affect the accuracy of a reconstructed model. C.T. Lin 

et al. also proposed a novel ICA-based photometric     

stereo approach based on a non-Lambertian model 

[7]. The goal of the ICA model is to separate the 

independent component of a surface normal on each 

point of an image. But the ICA model still has the 

problem of the x-axis, y-axis and z-axis values of the 

separated normal vector not being arranged in turn. 

In this paper, we propose a technique that uses the 

constrained independent components analysis (cICA) 

model [20]-[25]. It is a supervised ICA model which 

may make the outputs of a normal vector’s coordinate 

values arranged in turn. The 3D surface model is 

reconstructed from the surface normal on each point 

of an image, obtained by the cICA technique, and 

used a method for enforcing integrability [19]. The 

reason for those methods is easy to implement. 

The rest of this paper is organized as follows 

Section 2 describes the Lambertian model. The details 

of the proposed cICA-based reflectance model and its 

derivations are presented in Section 3. We present the 

acquisition of the surface normal of objects using the 

cICA model in Section 4. In Section 5, we use the 

enforcing integrability approach to obtain detailed 

information for reconstructing the surface of an object 

using its normal vectors. Extensive experiments are 

performed to evaluate the performance of the 

proposed approach; some of the results are presented 

in Section 6. Conclusions are given in the last section. 

 

 

 

2. The lambertian model 

Lambertian surface mean angle can get the same 

surface of illumination. The illumination of observing 

the factor is only involved in the direction of the light 

source. Suppose that the recovery of a surface shape 

denoted by z(x, y) from shaded images, depends upon 

the systematic variation of the image brightness with 

the surface orientation, where z is the depth field, and 

x and y form the 2D grid over the domain D of the 

image plane. Then the Lambertian reflectance model 

used to represent a surface illuminated by a single 

point light source is written as: 

R n x, y ,  x, y   L  x, y  sT n x, y 
, x, y  D ,   (1) 

where R () is the diffuse component intensity,  x, y is 

the diffuse albedo at location (x, y) of the surface, s 

is a column vector indicating the direction of the 

point light, and L is the light strength. The surface 

normal at location (x, y), denoted by n ( x, y), can be 

represented as 

𝑛𝑥,𝑦 =
[− 𝑝𝑥,𝑦−𝑞𝑥,𝑦 1]

𝑇

√𝑝𝑥,𝑦
      2+ 𝑞𝑥,𝑦

      2+1
         (2) 

where p(x, y)  z(x, y)/x and q(x, y)  z(x,  y)/y are the 
surface gradients [1]. 

The Lambertian model describes a diffuse 

reflection surface, which involves light being reflected 

on average from all directions after modulation by the 

surface reflection rate. It is a useful model in the field 

of computer vision 

3. The constrained ICA model 

ICA is a technique that transforms a 

multivariate random signal into a signal having 

components that are mutually independent in the 

complete statistical sense [20]. Let the time-varying 

observed signal be x=(x1, x2, … , xm)
T
, and the 

desired signal consisting of independent components 

(ICs) be s=(s1, s2, … , sn)
T
 . The classical ICA 

assumes that the signal x is an instantaneous linear 

mixture of Ics, or independent sources si, i=1, 2, .. m. 

Therefore, x=As, where the matrix A of size 𝑛 × 𝑚 

represents the linear memoryless mixing channels. 
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The goal of the ICA is to obtain a 𝑚 × 𝑛 demixing 

matrix W to recover all the ICs of the observed signal. 

y=(y1, y2, …,ym)T is given by y=Wx. For simplicity, 

in this paper, we address the case of a complete ICA, 

in which 𝑛 = 𝑚. 

The following is used to solve the surface 

normal n(x,y) for all and in Eq. (1) from 2D image 

intensity. Since the n(x,y) vector is a 3 1 column 

vector, we would need at least three images under 

illumination from light coming from different 

directions. If the location of the light sources were 

given, we could solve the normal vector on surfaces 

at every location (x, y). We know that the problem of 

solving Eq. (1) is a separation blind problem. Our 

previous research used the ICA model to solve the 

problem of finding the surface normal on each point 

of an image. But in the ICA model, it is easy to see 

that the following ambiguities exist [20]: 1) We 

cannot determine the variances (energies) of the 

independent components; and 2) We cannot 

determine the order of the independent components. 

We will generally discover that finding the surface 

normal vector involves the two problems. For those 

reasons, we use a constrained learning adaptation 

algorithm (cICA) based on image intensities to 

handle these ambiguities. 

The cICA algorithm described in [21] brings in 

the use of a constraint which is used to obtain an 

output that is statistically independent of other 

sources and is closest to a reference signal r(t). This 

constraining signal need not be a perfect match but it 

should be enough to point the algorithm in the 

direction of a particular IC spanning the measurement 

space. The closeness constraint can be written as 

𝑔(𝑤) = 𝜀(𝑤) − 𝜉 ≤ 0           (3) 

where w denotes a single demixing weight vector 

such that y=w
T
; ε(𝑤)  represents the closeness 

between the estimated output y and the reference r, 

and ξ represents some closeness threshold. The 

measure of closeness can take any form, such as 

mean squared-error (MSE) or correlation, or any 

other suitable closeness measure. In our 

implementation of the algorithm, we use correlation 

as a measure of closeness such that  g(𝑤) becomes 

𝑔(𝑤) = 𝜉 − 𝐸{𝑟(𝑤𝑇𝑣)} ≤ 0       (4) 

where 𝜉 now becomes the threshold that defines the 

lower bound of the optimum correlation.  

With the constraint in place, the cICA problem is 

modeled as follows: 

Maximize: (𝑤) = 𝜌[𝐸{𝐺(𝑤𝑇𝑣)} − 𝐸{𝐺(𝑉)}]2 , 

 

Subject to: 

g(w) ≤0, h(w)=E{y
2
}-1=0 and 

E{r
2
}-1=0, 

(5) 

where f(w) denotes the one-unit ICA contrast 

function; g(w) is the closeness constraint; h(w) 

constrains the output y to having a unit variance; and 

the reference signal r is also constrained to having a 

unit variance. In [38], the problem of (5) is expressed 

as a constrained optimization problem which is 

solved through the use of an augmented Lagrangian 

function, where learning of the weights and the 

Lagrange parameters is achieved through a 

Newton-like learning process. 

For example, the cICA algorithm was tested 

using a synthetic data set of four known sources were 

seen in Fig. 1(a), which had been used for ICA work. 

The sources were linearly mixed by a randomly 

generated mixing matrix, producing the dataset 

shown in Fig. 1(b). With this mixture of data, the 

cICA algorithm was run 100,000 times, each time 

with one of the five reference signals shown in Fig. 

1(c) as a reference. The first four of these references 

were obtained from the sign of the four original 

sources, and these were purposely kept as coarse 

representations of the true sources. The fifth 

reference is a sine wave which has a frequency 

radically different than any of the original sources, 

allowing study of the algorithm’s behavior given a 

“false” reference. Typical outputs of the algorithm are 

depicted in Fig. 1(d). Thus, if we want to find the 

surface normal vector on each point of an image, we 

can use the cICA model to find it. 
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Figure 1: (a) The four underlying sources of the 

synthetic dataset. (b) The

 linearly mixing underlying sources 

shown in (a). (c) The different 

references used for executions of cICA 

on 4 channels of data in (b). The first 

four references are derived from the 

signs of the four underlying source and 

the fifth reference is a “false” reference. 

(d) Examples of each recovered source 

using only the references given in (c), 

the fifth recovered source shows a 

“mixture” of two underlying sources. 

4. Determining the surface normal 
of objects using the cICA model 

In this section, we will describe the method of 

applying the ICA model to estimate the normal vector n 

( x, y) on the object surface corresponding to each pixel 

in an image. Since the n( x, y) vector is a 31 column 

vector, we need at least three images under 

illumination from lights coming from different 

directions for the normal vector n( x, y) estimation. 

Hence, to reconstruct the 3D surface of an object using 

its images, we have to take three gray-value images 

under three different illuminants. Assuming an image 

contains T pixels in total, we can rearrange all the gray 

values of the three images into a 3T matrix, with each 

row representing an image, and each column 

representing the gray values of a single pixel under 

three different illuminants. When this matrix is put into 

Eq. (1), and Eq. (1) is compared with x  As, we find 

that s is the n ( x, y) vector. 

Using the ICA decomposition, we rewrite equation 

(1) in matrix form as  

x(i)  As(i)   (i)Â n̂ (i) ,      (6) 

where Â = [a1, a2, a3]
T= Ŵ 

-1
 is the matrix depending 

on the lighting and viewing directions and has unit 

length; n̂(t) is the estimated normal vector 

corresponding to the tth pixel, i = 1, 2, …, T; and  

(i) is the albedo of the ith pixel. However, the 

decomposition in Eq. (6) is not unique. If there is an 

invertible matrix G, which satisfies 

A= ÂG and n(i)=G-1
 n̂ (i) ,        (7) 
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where A is the true matrix depending on the lighting and 

viewing directions of the images, and n(i) is the normal 

vector of the ith pixel in the standard XYZ coordinates, 

then the linear ambiguity belongs to the subset of GBR 

[11]-[13]. On the one hand, according to Georghiades’s 

[13] studies, if the surface of an object is seen under 

variable light directions, but with a fixed viewpoint, 

then the linear ambiguity can be reduced to three GBR 

parameters. As far as the surface normal vectors are 

concerned, we can only recover n ≅ 𝐺−1 n̂ , and 

𝐺−1 =
1

𝑔3
[

𝑔3 0 0
0 𝑔3 0

−𝑔1 −𝑔2 1
]         (8) 

where gi are the three GBR parameters. On the other 

hand, the three light sources corresponding to the 

three images do not lie in the same plane 

(non-coplanar); therefore, the columns of matrix A 

are linearly independent. In addition, using the ICA 

decomposition in Eq. (6), we can obtain an 

independent basis matrix Â ; thus the ambiguity can 

further be denoted by a diagonal matrix, i.e., g1 = 0 

and g2 = 0. The relation, then, between the normals 

in the standard XYZ coordinates and those in the 

independent coordinates system differs only by the 

g3 factor. For the performance evaluation of 3D 

image reconstruction, both estimated surfaces and 

synthetic surfaces are normalized within the interval 

[0, 1]. Therefore, the influence of the g3 factor on the 

estimated 3D surface can be removed. 

5. 3D surface reconstruction from 
the surface normal using the 
method for enforcing 
integrability 

In this section, we discuss using the method for 

enforcing integrability to obtain detailed information 

for reconstructing the surface of an object using its 

normal vectors. This approach was proposed by R. T. 

Frankot and R. Chellappa [19].  

Suppose that we represent the surface by the 

functions so that 

z(x, y) = ∑ 𝑐(𝝎)∅(𝑥, 𝑦, 𝝎)
𝝎∈Ω

 (9) 

where 𝝎 = (𝑢, 𝑣) is a two-dimensional index, Ω is 

a finite set of indexes, and the members of 

{∅(x, y, 𝛚)} are not necessarily mutually orthogonal. 

We choose the discrete cosine basis so that {c(𝛚)} 

is exactly the full set of discrete cosine transform 

(DCT) coefficients of z(x, y). Since the partial 

derivatives of the basis functions, ∅𝑥(𝑥, 𝑦, 𝝎) and 

∅𝑥(𝑥, 𝑦, 𝝎) are integrable, the partial derivatives of 

z(x, y) are guaranteed to be integrable as well; that is, 

zxy (x,y) = zyx (x,y) . Note that the partial derivatives of 

z(x, y) can also be expressed in terms of this 

expansion, giving 

𝑧𝑥(x, y) = ∑ 𝑐(𝝎)∅𝑥(𝑥, 𝑦, 𝝎)
𝝎∈Ω

 (10) 

 

z𝑦(x, y) = ∑ 𝑐(𝝎)∅𝑦(𝑥, 𝑦, 𝝎)
𝝎∈Ω

 (11) 

where ∅𝑥(𝑥, 𝑦, 𝝎) = ∂∅(∙)/ ∂x  and 

∅𝑦(𝑥, 𝑦, 𝝎) = 𝜕∅(∙)/𝜕𝑦. 

Suppose we now have the possibly 

non-integrable estimate n(x,y) from which we can 

easily deduce from Eq. (2) the possibly 

non-integrable partial derivatives �̂�x(x,y) and �̂�y(x,y). 

These partial derivatives can also be expressed as a 

series, giving 

�̂�𝑥(x, y) = ∑ 𝑐1̂(𝝎)∅𝑥(𝑥, 𝑦, 𝝎)

𝝎∈Ω

 (12) 

 

�̂�𝑦(x, y) = ∑ 𝑐2̂(𝝎)∅𝑦(𝑥, 𝑦, 𝝎)

𝝎∈Ω

 (13) 

This method can find the expansion coefficients 

𝑐(𝛚) given a possibly non-integrable estimate of 

surface slopes �̂�x(x,y) and �̂�y(x,y) : 

𝑐(𝛚) =
𝑝𝑥(𝛚)𝑐1̂(𝛚)+𝑝𝑦(𝛚)𝑐2̂(𝛚)

𝑝𝑥(𝛚)+𝑝𝑦(𝛚)
, 

for 𝛚 = (u, v) ∈  Ω 

(14) 
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where 

𝑝𝑥(𝝎)=∬ |∅𝑥(𝑥, 𝑦, 𝝎) |2𝑑𝑥𝑑𝑦 (15) 

 

𝑝𝑦(𝝎)=∬ |∅𝑦(𝑥, 𝑦, 𝝎) |2𝑑𝑥𝑑𝑦 (16) 

In the end, we can reconstruct an object’s surface by 

implementing the inverse 2D DCT on the coefficient 

𝑐(𝛚). 

6. Experimental Results 

We tested the algorithm on a number of real 

images from the Yale Face Database B [26] showing 

variability due to illumination. There are varying 

albedos in each point of the surface of the human 

faces (as shown in Fig. 2). 

Figure 2: Synthetic sphere surface object. 

 

First, we arbitrarily took from these test images 

the images of the same person who was photographed 

under three different light sources, as shown in the 

firstcolumnofFig. 4. We fed the normalized images 

into our algorithm. For the face surface 

reconstruction problem, the normal vectors of a 

sphere’s surface were used as the reference values for 

the cICA model due to their similar structures. The 

true depth map of the synthetic sphere object is 

generated mathematically as 

z(x,y)= 
 |√𝑟2 − 𝑥2 − 𝑦2| , if 𝑥2 + 𝑦2 ≤ 𝑟2 

(17) 
0, otherwise 

where r=48, 0 < x, y ≤ 100  , and the center is 

located at (x, y)=(51, 51). The sphere object is shown 

in Fig. 2.Fig. 3 shows the normal vectors of a 

sphere’s surface. 

 

 

 

 

 

(a) 

 

 

 

 

 

(b) 

 

 

 

 

 

(c) 

Figure 3: The normal vectors of a sphere’s surface 

(a) the X-component, (b) the 

Y-component, and (c) the Z-component 

of the normal vectors. 

After updating the parameters by several 

iterations, we obtained the normal vector of the 

surfaces of the human faces corresponding to each 

pixel in the image of the output nodes. The results are 

shown in the second column of Fig. 4, which give the 

X-component, the Y-component, and the 

Z-component of the surface normal vector in order. 
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(e) (f) 

Figure 4: (a)(c)(e) represent three training images 

with differ light source positions from Yale Face 

Database B in frontal.   (b)(d)(f) represent 

surface normal corresponding to the three source 

images. 

 
Figure 5 presents the results of the reconstructed 

3D human face. Fig. 5(a) shows the surface albedo of 

the human face shown in Fig. 4. Fig. 5(b) shows the 

result from using our proposed algorithm. The 

reconstructed results find by using Georghiades’s 

approach [12] and Hayakawa’s approach [3] are shown 

in Fig. 5(c)   and   5(d),   respectively.  The   

results   clearly indicate that the performance of our 

proposed nonlinear reflectance model is better than 

that of Georghiades’s approach and Hayakawa’s 

approach. When the results obtained by using 

Georghiades’s approach are compared with the results 

that find by using our proposed approach, the 

reconstructed surfaces resulting  from  our  

algorithm,  taking  into consideration the specular 

components, are obviously better in high-gradient 

areas, such as the nose. Hayakawa’s approach required 

added constraints to be able to reconstruct a 3D model 

of a human face, which is similar to our approach. 

However, when the constraints were unavailable, it 

could not reconstruct a 3D model of a human face. 
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Figure 5: The surface albedo of human face in Fig. 

4. The results of 3D model 

reconstruction by (b) our proposed 

algorithm, (c) Georghiades’s approach 

in [12], and (d) Hayakawa’s approach in 

[3]. 
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7. Conclusions 

The application of component analysis methods, 

such as ICA to surface normal vector analysis, has met 

with considerable success. However, when automated 

analysis techniques are required, the standard ICA 

algorithms prove to be less useful. Supervising the 

ICA solution by incorporating prior domain 

knowledge is logical, and it is in keeping with expert   

evaluation of neurophysiological signals, where  for  

different evaluation purposes predetermined 

expectations of signal morphology and distribution are 

present. cICA as applied in this paper with temporal 

constraints results in a useful technique for the fast and 

efficient extraction of surface normal vectors from 

three surface reflection images. An important result 

derived from using the constrained cICA model for 

solving photometric stereo problems is desired output 

values and smoothing conditions are not needed. This 

allows for easier convergence and makes the system 

stable. 

Performance comparisons of our proposed 

cICA-based photometric stereo approach with 

Georghiades’s approach in [12] and Hayakawa’s 

approach in [3] were made. We tested our proposed 

algorithm on human face images for the 

reconstruction of 3D human face surfaces. The results 

clearly indicate that the performances of our proposed 

approach are better than that of Georghiades’s 

approach in [12] and Hayakawa’s approach in [3]. All 

the experimental results showed that the performance 

of our proposed approach is better than those of the 

two existing photometric stereo methods. 
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