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Abstract 

Pulse signals are one of the most important 
physiological signals, containing a large number of 
physiological and pathological information of human 
body. Various disease information of the human body 
is often contained in their pulse signals. The change 
of the pulse signal characteristics is often the earliest 
embodiment of human disease. Research of human 
pulse signals is very helpful to disease diagnosis. 
Human pulse signals are often corrupted with noise, 
and it is difficult to extract the clean pulse signals. 
Therefore, denoising is a very important and difficult 
job before pulse signal analysis. This paper starts at 
pulse signal analysis and focuses on denoising 
algorithms. 

EMD (empirical mode decomposition) and a 
wavelet transform denoising method are described 
first, and then the advantages and disadvantages of 
them are analyzed; a novel denoising algorithm 
combining EMD and a wavelet transform is proposed. 
Finally the proposed algorithm is compared with 
wavelet denoising and the EMD denoising method 
qualitatively and quantitatively. 
Keywords: Pulse signal, Wavelet transform, 
Empirical mode decomposition (EMD), de-noising 

1. Introduction 

In the process of human pulse signal 
acquisition, the examinee's breathing, body 
displacement, the noise of the instrument itself, and 
the other factors will directly affect the quality of the 
acquired pulse signals. If no preprocessing required 
to the corrupted signals is done to minimize the 
effects of the noises or interferences on the pulse 
signal, the subsequent analysis will not be accurate. 

Concerning the pulse signal denoising method, 
the EMD algorithm and the wavelet threshold 
algorithm are commonly used in recent years and 
have achieved good results. But in the wavelet 
algorithm there are many factors, and changing one 
of the factors will lead to different denoising effects. 

 
 
 
 
 
 

In EMD method its multi-resolution and the 
adaptability of decompositions are very useful in 
nonlinear and non-stationary signal processing. 
However, in EMD denoising process all the high 
frequency components are removed, so this will lead 
to the loss of useful information. Therefore, this 
method is too rough although it is simple. This paper 
combines the good time-frequency localization 
characteristics of the wavelet transform with the 
simplicity of the EMD method, and proposes a novel 
algorithm applicable to denoising human pulse 
signals. 

2. EMD Method 

2.1 The EMD Principle 
In everyday life, most signals are complex 

signals with multiple components, and it is difficult 
to analyze their characteristics. As a result, the 
multi-component signal is decomposed into multiple 
signals with single component, and after processing it 
will be reconstructed in order to get the original 
signal type. The essence of the EMD method is to 
obtain intrinsic mode functions (IMF) with different 
instantaneous frequencies through the characteristic 
time scales of the signal, and then the signal is 
decomposed.  

The procedure of the EMD decomposition is: 1) 
to find out the points of local maximum and 
minimum value of the signal; 2) to apply curve 
interpolation to obtain he extremum points and the 
upper envelopes, lower envelope and the mean 
envelope; 3) to select signals conforming to the 
intrinsic mode functions of the signal by sifting 
process; 4) to decompose the signal into the sum of 
several intrinsic mode functions and a residual. There 
is no direct relationship between IMFs. The EMD is a 
kind of signal sifting method. The frequencies of the 
decomposed IMF are from high to low. The upper 
and lower envelopes generated by curve 
interpolations in the decomposition process from the 
local maxima and minima are shown in Figure 1. In 
Figure 1 the black thin line represents the original 
signal; the short dotted line on the top is the upper 
envelope; the short dotted line in the bottom is the 
lower envelope; and the thick dashed line in the 
middle is the mean envelope of the signal. 
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Figure 1: Upper envelope, lower envelope and the 

mean envelope of a signal 
 

In conclusion, the sifting procedure of the 
decomposed IMF is shown in Figure 2. 

 

 
 

Figure 2: The EMD of the screening process 
diagram 

 
In each sifting process an IMF will be selected, 

and in the next sifting process the rest signal is sifted. 
When all the sifting processes are finished, the 
original signal can be expressed as shown in (1) 
where rn(t) is the last remaining trend information, 
and ci(t) is the ith IMF component. 
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2.2 The Application of EMD in Signal 

De-noising 
In EMD method, a data sequence can be 

decomposed into different frequency channels whose 
frequency component is listed from high to low. Due 
to the high frequency characteristics of noise, it is 
sure that EMD will have a wide application in signal 
denoising. In principle, EMD method not only has the 
advantage of multi-resolution similar to that of 
wavelet transform, but also overcomes the 
disadvantage of choosing wavelet base. Also, it does 
not need to choose the number of decomposition 
layer. EMD can decompose a signal adaptively 
according to the nature of the signal itself. 

Wu and Huang [1,2] found the statistical 
properties of white noise in EMD algorithm through 
extensive experimental studies: After EMD 
decomposition each IMF component of a white noise 
signal conforms to a normal distribution. Every 
Fourier spectrum of IMF is consistent, covering the 
same area under semi log scale coordinates. In 
addition, Wu and others got the conclusions that the 

product of the average energy density of an IMF and 
its corresponding cycle keeps a constant, and the 
average cycle is about twice the previous IMF 
component of the cycle. That is: 
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In the above equations Ei represents the energy 

density of the ith IMF, N is the data length, iT  is the 
average cycle of the ith IMF, which is defined as the 
ratio of the number of the data sampling and the 
number of maxima in the ith IMF components. That 

is max/ NNT i = , where Nmax is the number of 
maxima in the ith IMF. All of the above provide a 
theoretical basis for the EMD denoising. 
 
2.2.1 EMD Scale De-noising 

EMD sifts signals layer by layer by different 
time scales. Each IMF corresponds to a specific time 
feature scale, and it can be used to the signal filtering. 
The former of the IMF is decomposed, and the higher 
frequency it will have. The first decomposed 
frequency is the highest frequency of the original 
signal. The later frequencies decomposed by EMD 
will be intermediate frequency and lower frequency 
components, and the last one is a monophonic trend 
component. For an original signal containing noise, 
the high frequency resulting from the decomposition 
of the IMF component is often the noise of the signal, 
while the low frequency component of IMF is 
generally the average or the trend of the original 
signal. For the purpose of convenient analysis, we 
can combine arbitrary intrinsic mode functions to 
highlight some characteristics in a certain frequency 
range of the analyzed signal. Flandrin proposed a 
method of constructing a filter bank based on the 
filtering characteristics of EMD decomposition 
[3,4,5]. For instance, through EMD method a signal 
is decomposed into n intrinsic mode components. As 
a matter of convenience the last trend term is 
assumed to be the nth IMF. So a low-pass filter can 
be obtained by removing the first or several former 
IMF components, and combining the remaining IMF 
components, as shown in Eq. (4). 
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A high-pass filter is obtained by removing the 
trend term or the last few low-frequency IMF and 
combining the rest of IMF, as shown in Eq. (5). 
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A band-pass filter is obtained by removing the 

first or the former few IMFs and the last one or 
several IMFs, and combining the rest of IMFs, as 
shown in Eq. (6). 
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A band-stop filter can be obtained by removing 

several middle terms of intermediate frequency of 
IMF, and combining the remaining higher frequency 
and the lower frequency components, as shown in Eq. 
(7). 
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It can be seen that the EMD denosing method is 

very simple. The filter bank is different from the 
traditional fixed cutoff frequency filters. The 
passband cutoff frequency will change with the input 
signal, so in reality it is an adaptive filter banks. The 
obvious advantage is that, due to the IMF 
decomposition the nonlinear and the non-stationary 
characteristics of the signal are preserved to the 
largest extent after filtering. Also there is no limit to 
the data type. Because the selection of the base 
functions is in the signal itself, it does not need to 
define the parameters of the filter. Therefore, the 
influence of subjective factors is reduced, and better 
results will be obtained in most cases. 

However this denoising approach is relatively 
rough. In one hand there are not only noises but also 
signals in some IMF components. Simply removing a 
few components may lead to the loss of useful signals. 
On the other hand the number of IMF component is 
not known in advance, and the position of the noise 
in IMF component is not known. Therefore, 
whichever component will be removed is very 
difficult to determine. 
 
2.2.2 EMD Thresholding 

After EMD decomposition, noises and the 
useful signals will have different spectrum 
characteristics, and random noises are mainly in the 
low-order of IMF component. If the low-order of the 
IMF component is only removed, and the higher 
order and the other components are preserved, most 
of the noises will be removed. However, this 
denoising method will filter out the useful signal at 
the same time. Therefore, the signal will be distorted. 

The energy of a random noise is uniformly 
distributed, and the energy of a useful signal is 
relatively concentrated. Therefore, the absolute value 
of the IMF coefficients of the noise is small, and the 
IMF coefficients of the useful signal are relatively 
large. If we take the absolute value of the IMF 
coefficient as a local measurement and designate a 
reasonable threshold standard, we can practice 
thresholding denoising method like this: If the 
absolute value of the coefficient is smaller than the 
threshold, we think it belongs to a noise and let this 
coefficient be zero. If the absolute value of the 
coefficient is bigger than the threshold, we think it 
belongs to a useful signal. 

For a given signal x(t), we can get n IMF 
components through EMD decomposition. For each 
layer of the IMF component an appropriate threshold 
is specified. Assume the IMF components are ci (t), 
and after threshold processing it will be )(' tci . This 
signal can be reconstructed by Eq.(8). 
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Where the threshold processed IMF components are 
as shown in Eq. (9). 
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Where T is the d threshold, sgn(· ) is a sign function. 

3. Proposed De-noising Algorithm 

3.1 Denoising by Wavelets 
With regard to a wavelet transform, its 

multi-resolution and time-frequency local properties, 
together with the fast algorithm, all make it a concern 
spot in denoising area. 

 
3.1.1 Wavelet Thresholding 

A wavelet thresholding method was first 
proposed by Weaver et al [6], then Donoho and 
Johnstone [7], Professors at Stanford University 
made this approach systematically explained. The 
main theoretical basis is that an orthogonal wavelet 
transform has a strong decorrelation feature. After a 
wavelet transform, the signal energy focuses on the 
large wavelet coefficients, and the noise energy 
distributes throughout the wavelet region. When the 
wavelet coefficient is less than the critical threshold, 
it is mainly caused by the noise and should be 
discarded. When it is greater than this critical 
threshold, it is mainly caused by the signal. And then 
these coefficients are processed to   form a new 
group of coefficients. Finally the denoised signal will 
be obtained by wavelet reconstruction. 
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Wavelet thresholding process for 
one-dimensional signal can be divided into the 
following three steps: 

1).Wavelet decomposition: It selects a wavelet 
and the decomposition level N, and practice 
the N level decomposition to the signal. 

2).Threshold processing: In order to keep the 
overall signal shape and preserve the low 
frequency coefficients, for the high 
frequency coefficients from the first to the 
Nth layer, quantization processing is done 
by thresholding method for each layer. 

3).Signal reconstruction: For the low-frequency 
coefficients of the Nth layer and the 
high-frequency coefficients from the first to 
the Nth layer of the quantized process, 
inverse wavelet transform is done to get the 
denoised signal. 

 
3.1.2 Selection of Threshold Function 

Threshold function represents the different 
treatment strategies and different estimation methods 
for the wavelet coefficients which are less or greater 
than the threshold.  There are two types of threshold 
functions: hard threshold function, soft threshold 
function. Suppose w is an original wavelet coefficient, 
η(w) is the wavelet coefficient after thresholding, and 
T is the threshold, then 

1). hard threshold function 
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2). soft threshold function 
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Where sgn(w) is the sign function, that is, 
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In Fig.3 and Fig.4, the abscissa represents the 

original signal wavelet coefficients, and the ordinate 
represents the wavelet coefficients after thresholding. 
In the hard threshold, if the absolute value of the 
wavelet coefficient is less than the threshold, the 
processed wavelet coefficient is forced to be zero. 
The disadvantage is that it will bring some 
discontinuous points, but it can better preserve the 
jump signal. Based on the hard threshold method, soft 
threshold method shrinks the upper boundary 
discontinuities to zero. Therefore, you can effectively 
avoid interruption, make the reconstructed signal 
relatively smoother. But soft threshold method will 
cause edge blurring distortion. 

 
 

 
Figure 3: Hard threshold function 
 

 
Figure 4: Soft threshold function 
 

A wavelet thresholding method is simple and 
has small amount of calculation, so it gets extensive 
applications. 

 
3.2 Improved Algorithm 

This paper mainly focuses on the wavelet 
threshold denoising method, and proposes an 
improved algorithm decompose human pulse signal 
by EMD method; determine the dominant intrinsic 
mode function (IMF) component of noise; denoise 
these IMF components with an improved wavelet 
threshold method. The improved algorithm has 
advantages of continuity, high order derivative and 
good flexibility. It overcomes the defects of wavelet 
threshold denoising, avoid the difficulty of wavelet 
bases choice, and preserves the useful information in 
the original signal under the insurance of good 
denoising effect. 

 
3.2.1 Determine the IMF components of denoising 

Generally EMD wavelet threshold denoising 
method processes all the decomposed IMF 
components. This will lead to the loss of the 
useful signal. But this paper will process parts of the 
IMF components in order to avoid more distortion.  

Boudraa A O [5] proposed a concept of 
continuous mean square error. The essence of it is the 
energy of every IMF component. The definition of 
continuous mean square error is as expressed by 
Equation (12): 
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Where, N is the length of the signal, and 

IMFk (ti) is the kth-order IMF decomposed by noise. 
The demarcation point k can be computed by Eq.(13). 
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The former k IMF components is dominated by 

noise, and should be de-noised. Then all the 
IMF after the kth components need to 
be reconstructed: 
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3.2.2 Modified Wavelet Threshold Function 

Although the soft, hard threshold method finds 
wide applications in wavelet denoising, there are 
some defects in the two algorithms. In hard threshold 
processing there are discontinuous points, and pseudo 
Gibbs phenomena will occur in the signal 
reconstruction. In soft threshold processing, although 
there are no continuity problem, a constant deviation 
will lead to an inevitable error for the reconstructed 
signal [8].  

According to some theoretical analysis, we put 
forward the following improvement. 
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j represents the jth-order IMF, a>0. 
The modified threshold function is continuous. 

When 0→m , a=1, it is a soft threshold function; 
when ∞→m  it is a hard threshold function. As long 
as the parameter M and a are adjusted properly, we 
can get better denoising result.  

Human pulse signal is decomposed into several 
IMF components by EMD. Find the IMF components 
in which noise is dominant and do threshold 
processing. First, calculate the thresholds of the IMF 
components which need to be denoised; and then 
process these IMF components through the modified 
threshold function. In this paper we use a modified 
algorithm (16) to estimate the threshold according to 
[8]. 
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Where, e is the natural logarithm. When j=1, 
the result is consistent with the original fixed 
calculation formula. 

 
3.3 Algorithm Details 

The block diagram of wavelet threshold 
denoising algorithm is shown in Fig.5. This method is 
summarized in the following steps: 

1).Perform an EMD decomposition to the 
original noisy signal x (t), and N IMFs 
(IMF1~IMFN) are obtained. 
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2).Since the first order IMF is almost all the 

noise, remove it directly; 
3).Calculate continuous mean square error of 

each IMF component by Equation (12), and 
determine the cutoff point of k; 

4).Find the IMF components (IMF1~IMFl) in 
which noise dominants, and calculate the 
noise level in these components; 

6745.0
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j
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Where median () represents the value in the 
middle position if all the values in the 
sequence are listed from small to large or 
from large to small. If the sequence length is 
odd, then take the middle element; if the 
sequence length is even, then take the 
arithmetic average value of the two 
elements in the middle position. 

5).Estimate the thresholds of the IMF 
components in which noise is dominant by 
using Equation (16), where N is the length 
of the signal, j means the jth IMF 
component (j=1,2,…, l) 

6).Do the wavelet threshold denoising to 
IMF1~IMFl  by Equation (15). 

7).Reconstruct the pulse signal x’(t) by the 
denoised IMF’1~IMF’l, the original signal 
component IMFl+1 ~ IMFn and the residual 
signal rn(t). 
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Figure 5: The block diagram of wavelet threshold 

denoising based on EMD 
 
3.4 Effective Denoising Evaluation 

Generally signal-to-noise ratio (SNR) and mean 
square error (MSE) are used to evaluate a denoising 
method. However, pulse signal contains rich 
pathology information, so we need add another 
index——cross-correlation coefficient to evaluate the 
whole performance. 

1). signal-to-noise ratio (SNR) 
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Where s(n) is the original signal, )(ns
∧

 is the 
denoised signal. The larger of SNR is, the better the 
denoising effect is, and the less noise in the signal. 

 
2).Mean square error (MSE) 
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Where n is the number of sampling points, s(n) 

is the original signal, and s^(n) is the de-noised signal. 
When MSE is smaller, the better denoising effect. 

4. Simulation Results 

4.1 Pulse Signal Acquisition 
The tested human pulse signals in this paper are 

acquired by the pulse instrument designed by Wang 
Yamin, a teacher of Tianjin University in China. 

According to TCM (traditional Chinese 
medicine） theory, the human wrist cunkou is divided 
into three parts: cun, guan,  and chi; and 
different part of the pulse information represents the 
physiological and pathological information 
corresponding to the different position of the human 
body. The pulse pressure sensor is placed in some 
fixed position of the tester to collect the pulse signal. 
To test the three parts: cun, guan, and chi , on the left 
and right wrist, a total of six points need to be 
measured. The cunkou radial artery pulse on the left 
wrist is the strongest one, so we focus on it and 
process it in this paper. 
4.2 De-noising Results of Human Pulse 

Signals 
All the simulations in this paper are completed 

in the matlab7.0 platform. The sampling frequency is 
1500Hz, and the number of sampling points is 7232.  

Figure 6 shows a segment of the noisy pulse 
signal measured on the left Cunkou. This pulse signal 
is denoised by the proposed method. As can be seen 
from Figure 6, the edge of the original signal is not 
clear, and this means that there exists various kinds of 
noises. 

 
Figure 6: A segment of the noisy pulse signal 

measured on the left Cunkou 
 
1).Wavelet thresholding 

Get 8-scale decomposition by using 
sym8 wavelet, and then soft threshold to the 
noisy pulse signal by the fixed threshold rule. 
As we can see from Figure 7, after denoising 
by a soft threshold method, the pulse 
waveform becomes smoother. The primary 
noise is suppressed, and the peak points, 
which represent the signal’s features, are well 
preserved. But at the discontinuous points, 
Gibbs phenomenon occurs in the edge of the 
signal, and there exists some waveform 
distortion. 

Input pulse signal  

 

Calculate continuous mean square 

error to determine the cutoff point of 

IMF’1~IMF’l 

IMFl+1 ~ IMFn , 

residual signal. 

Reconstructed 

  

Get N IMFs and a residual 

 

EMD 

Wavelet 

threshold 
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Figure 7: Pulse signal after wavelet de-noising 

 
2).EMD de-noising 

Performing EMD decomposition to the 
noisy signal in Figure 6, we can get a series 
of IMF components (IMF1 ~ IMF9) and a 
residual components (res), as shown in 
Figure 8. Each IMF component contains the 
characteristic time scale of the original signal. 
As can be seen from Figure 8, IMF1 ~ IMF5 
contain more noise, res reflects the trend of 
the signal. Therefore, the reconstructed 
signals will include IMF6 ~ IMF9 and the 
residual components res. The denoising 
result is shown in Figure 10. We can see that 
the signal becomes smoother, but large 
distortions occur in details section. 

 
Figure 8: EMD decomposition 

 
3).EMD wavelet threshold de-noising 

Process the pulse signal in Figure 6 by 
using EMD and the traditional soft threshold 
wavelet denoising method, where the 
threshold estimation is obtained according to 
the fixed threshold rule. The denoising 
results are shown in Figure 11, where most 
of the noise is filtered out, so the de-noised 
signal becomes smoother. But in the vicinity 
of the wave the processing is very rough, 
resulting in the distortion of the signal. 

 
Figure 9: EMD de-noising 
 

 
Figure 10: EMD wavelet threshold de-noising 

results 
 

4).Improved EMD wavelet threshold 
de-noising 

Compute the average of the EMD 
decomposed IMF1 ~ IMF9 components by 
Equation (12), and the results are shown in 
Table 1. It can be seen that CMSE4 is the 
minimum, so IMF1~IMF4 belong to noise, 
which should be denoised by the improved 
wavelet thresholding. When denoising, we 
choose m=0.8 and a=2. 

The final denoised signal should be 
reconstructed by the denoised IMF 
components, untreated IMF components and 
the residual components res. The final 
denoised signal is shown in Figure 11. 
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Figure 11: Improved EMD wavelet thresholding 

results 
 

Table 1: Continuous MSE of IMF components 

Continuous MSE value 

CMSE1 4.3160e-04 

CMSE2 1.8300e-04 

CMSE3 1.6439e-04 

CMSE4 1.4459e-04 

CMSE5 1.1836 

CMSE6 7.4996 

CMSE7 14.4801 

CMSE8 16.7327 

CMSE9 0.0721 

 

Table 2: SNR, MSE of three de-noising methods 

Method SNR MSE r 

Wavelet 

thresholding 
34.9614 0.0358 0.9994 

EMD 19.7616 1.1844 0.9808 

EMD Wavelet 

thresholding 
36.0048 0.0281 0.9995 

Improved method 51.8292 
7.3579

e-004 
1.0000 

From Figure 11 we can see that the 
reconstructed pulse signal is smooth, so the noise 
interference is suppressed, and the effective signal is 
preserved. From Table 2, it can be seen that SNR、
MSE and r (cross-correlation coefficient) of the 
Improved method got obvious increasing than 
wavelet denoising and EMD denoising method. It 
indicates that the proposed improved method 
achieves better denoising effect. 

V. Conclusions 

This paper studies EMD and Wavelet 
thresholding methods. On the basis of wavelet 
transform and empirical mode decomposition, we put 
forward an improved wavelet thresholding method 
based on EMD. Then the human pulse signals are 
denoised by the improved method. Experimental 
results show the feasibility and superiority of the 
improved method. 
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